今天高考教育网小编整理了高等数学是什么? 我怎么学相关内容,希望能帮助到大家,一起来看下吧。
本文目录一览:

怎样学好数学专业的高等代数与解析几何及数学分析讲义?
怎样学好高等数学 目前,全国高等数学书籍正式出版的有十种,大致分为教材,学习指导和习题及其解答三大类型。就专业而言有理工科用高等数学和文科用高等数学。就层次而言有专科本科生用书,有报考硕士研究生用书及教师教学参考用书。应当说,每本书都有一定的特点,适用不同的对象和范围。现列举一些 有代表性的高等数学书籍,并扼要的介绍。(1)《高等数学》上,下册
同济大学数学教研室主编,高等教育出版社;《高等数学习题集习题选解》上下册桂子鹏,骆承欣,张依华等编,高等教育出版社,这一套书是我国理工科院校用的最为广泛的教材,其特点是内容完整,结构严谨,由浅入深,条理清晰。这套教材在我国个高校普遍使 用,先后二十几次印刷发行。实践表明,这套教材收到良好的教学效果,的确是一优秀教材。(2)《高等数学教程》施学瑜编,
清华大学出版社,《高等数学辅导》上下册盛祥耀,胡金德,葛严麟,张元德编,清华大学出版社。这两套书籍是根据教育部1980年制定的工科高等教学大要求编写的,是各位编者在清华大学多年从事高等数学教学和辅导的成果的结晶。它具有内容丰富,通俗 易懂,重与工科联系,起点低落点高等特点。 (3)《高等数学》
西安交通大学数学教研室编,高等教育出版社。这套教材具有信息量大,推理严谨,选题精,方法技巧性强,对理科工科都十分适用。除上述介绍的高等数学书籍外,还有其他一些理工院校出版的高等数学也有相当的参考价值。《高等数学》上下册,
华东理工大学数学系编(
化学专业用);《高等数学》张辛炎编,
北京大学出版社;《高 等数学吴学澄,黄炳生编,
东南大学出版社(自考用)。 (4)《经济应用数学基础微积分》周誓达编著,
中国人民大学出版社;《高等数学》(经济和管理专业用)高汝熹编,
复旦大学出版社;这两本书是为高校文科专业开设高等数学而编写的。它的特点是内容简洁,推理扼要,方法明确,重视经济应用。对
经济学中出现的边际函数,函数的弹性,供求平衡点,存储问题都有详细介绍。书中个章节都有一定难度适中的习题,并附有答案,适合文科学生自学。
学习高等数学的方法
学习高等数学要有一种精神,用大数学家华罗庚的话来说,就是要有“学 思 契而不舍”的精神。由于高等数学自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法,分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,契而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,谈一 点学习高等数学的做法,一供参考。第一,“学 思 习”是学习高等数学大的模式。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在学中问和问中学,才能消化数学的概念,理论。方法。所谓思,就是将所学内容,经 过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考,善于思考, 从厚到薄的学习数学的方法,值得我们借鉴。所谓习,就高等数学而言,就是做练习。这一点数学有自身 的特点,练习一般分为两类,一是基础训练练习,经常附在每章每节之后。这类问题相对来说比较简单, 无大难度,但很重要,是打基础部分。知识面广些不局限于本章本节,在解决的方法上要用到多种数学工 具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。 第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。 高等数学本身就是数学和其他学科的基础,而高等数学又有一些重要的基础内容,它关系的全局。以微积 分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函求导法及 积分法关系到今后个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习高等数学时要一 步一个脚印,扎扎实实地学和练,成功的大门一定会向你开放。 第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。高等数学 归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内 容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多 掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。 第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一 本有代表性的参考书,再看其他参考书就会迎刃而解了。 第五,注意学习效率。数学的方法和理论的掌握,就实践经验表明常常需要频率大于4否则做不到熟 能生巧,触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”“ 温故而知新”都有是指学习要经过反复多次。高等数学的记忆,必建立在理解和熟练做题的基础上,死记 硬背无济于事。 在科学的道路上是没有平坦大道的,可是“科学有险阻,苦战能过关”。“人生能有几回搏?”“ 人生总能搏几回!”每个大学生应当而且能够与高等数学“搏一搏。 首先,解析几何的知识是必须有的,只有知识体系的建立才可以让你更了解这哥知识的内容.第二,要学会充分利用初中的平面几何知识,解析几何说到底就一个计算,它本身就是为了解决平面几何问题而建立的体系,考得就是谁算得准,算得快,所以你要尽量减少计算的步骤和时间,才能更快更准,这就需要平面几何的知识,有时候用上了,题目会变的非常简单.第三,就是熟方法,常用解决点的轨迹的几种方法一定要熟.还有,有的时候做题,不要太追求一定的思路,回归的定义和本质也是是很好的方法,最朴素的就是最好的.第四,多做题,做题是你熟悉这些方法和技巧的最快途径,不一定要大量练习计算,更多的是练习技巧.当然,基础的训练是不能少的.
相信你找到学习的方法,一定会得到好成绩的! 我个人认为学数学其实应该包括两部分,即数学发现+数学证明. 不过可惜的是目前的教材多以严密性为理由,把数学的发现给丢掉了.其结果是教材很可能写成这个样子:定义1,定义2,证明1,证明2,例题1,定义3,定义4,……,我称之为字典式写法.这样写从数学逻辑上讲没问题,很严密. 但是,写书面向的对象是人,多数是初学者,字典式的形式化写法后果多半是一头雾水,看了半天不知所云.结果很可能对数学产生恐惧,反感,甚至厌恶.众所周知,学习数学到了大学阶段,如果一个人对数学没有兴趣甚至排斥数学,那么他几乎是不可能学好数学的.很多人学了很多人数学,却发现自己只会做别人设计好的题.到了自己研究数学时,不会发现问题,感到很迷茫.没思路,没方向,没灵感等等. 结果多半慨叹自己数学天资太差,IQ太低.
说实话,除了极少数天才外,人与人的智商真的差距那么大吗? 同一个家族,彼此之间血缘很近,智商应该差不多吧.可数学水平差距可不是一个量级的.就SCIbird自己来说吧,在现在他的家族中,他不是最聪明的.但我父亲那边和我母亲那边的亲戚中没有一个人数学水平及的上我的.而且我从初中在数学上就确立了遥遥领先的优势.我从来不认为这个数学优势是天生的.
我总结了自己的经验:勤奋+态度+方法.
首先是勤奋,如果说是天才是天生的,我们无法改变.那么勤奋却可以改变.
其次是态度,低调,虚心,进取.不要贪一时口舌之快,而自命不凡.学数学想提高水平,"自命不凡"要不得.与其在口舌上讨便宜,不如坐下来多看看书.
方法,那可能话就长了.我只说一条:学数学应该包括数学发现和数学证明两部分.

求复旦大学懂高数的各位学长学姐帮忙
高数的答案没有电子版的 不过你要要的话 在本部篮球场边上的 打印店常年出售高数答案,是他们打印装订好的 一份也就十块钱吧 很厚的。其次,C语言的话建议用谭浩强的那本。经典之作啊。关于其他的教材,建议方便的话到复旦邯郸校区 过来二手书店自己淘吧 正门口边上的二手书店个人觉得是最全的
第三个 你可以去复旦日月光华BBS上 二手书版或者相应得专业版去求吧。没准有比较好的学长直接送你的来。
最后祝顺利吧。
高考教育网
高等数学是什么? 我怎么学
高考教育网(https://www.hngkedu.com)小编还为大家带来高等数学是什么? 我怎么学的相关内容。
高等数学
是比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的
集合论
初步、逻辑初步称为中等数学的,将其作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是由
微积分学
,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科,主要内容包括:极限、微积分、空间解析几何与向量代数、级数、
常微分方程
。一般以微积分学和级数理论为主,其他方面的内容为辅,各种课本中略有差异。
高数学习建议
高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。具体的
学习方法
因人而异,但有些基本的规律大家都得遵守。我具体说一下列在下面:
1。书:课本+习题集(必备),因为学好数学绝对离不开多做题(跟高中有点像,呵呵);建议习题集最好有本跟考研有关的,这样也有利于你将来可能的考研准备。
2。笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,
可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3。上课:建议最好预习后听听。(其实我是从来不听课的,除非习题课),听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但remember,高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4。学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,小弟你既要有形象的对它们的
理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。
基本网络就是上面说的笔记上的总结的知识提纲,也要重视。
基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的。
题型都明白了,比如各种极限的求法。
好了,这些都做到了,高数应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此
还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道真的很有用(不知你学的什么专业)
最后再说说怎么提高理解能力的问题(一家之言)
1。举例具体化。如理解导数时,自己也举个例子,如f(x)=820302X2+811211(x的平方)。
2。比喻形象化。就是打比方,比如把一个
二元函数
的图形想成
邻家女孩
的头上的草帽。
3。类比初级化。比如把二元函数跟一元函数类比,
泰勒公式
想成
二次函数
,好理解。
4。多书参考法。去你们图书管借几本不是一个作者写的高数教材,虽然讲的内容都一样,但不同的作者往往对同一个问题从不同的角度表述,对你来说,从很多不同的角度、例子理解同一个问题,往往就容易多了。Just have a try!
5。不懂暂跳法。对一些定理的证明、推导过程等,如果一时不明白没关系,暂时放过,记下这个疑点待以后解决就可以了。
说了这么多也不知哪些对你有用,对了,还有要不耻上问,问同学老师都行,弄会才是目的。如有什么问题,给我留言。
另外对于你即将要学习的
线性代数
,则必须树立一个良好的学习态度,在这里的内容相对高数而言比较抽象,有必要多花些时间,而且在这阶段的学习里正是锻炼你的
抽象思维
和逻辑思维的好时机,对你以后的专业学习是大为有帮助,希望能够好好的把握。
而对于概率与统计,就更注重实际,偏于计算,对于一些数论里的知识和一些数学理论要有个很熟练的把握,而且它也是更贴近你专业的一门数学。
总之,要学好大学数学,最重要的是打好前基础。
(竭力为您解答,希望给予【好评】,非常感谢~~)
以上就是高等数学是什么? 我怎么学全部内容,更多相关信息,敬请关注高考教育网。更多相关文章关注高考教育网:
www.hngkedu.com免责声明:文章内容来自网络,如有侵权请及时联系删除。